About Dr. Kang


Jing X. Kang, M.D., Ph.D.
Director, Laboratory for Lipid Medicine and Technology

Harvard Medical School
Massachusetts General Hospital
149-13th Street, Room 4001
Charlestown, MA 02129
Tel: 617-726-8509
Fax: 617-726-6144
Email: kang.jing@mgh.harvard.edu

URL: http://www.llmt.org


Dr. Jing Xuan Kang graduated from the Guangdong Medical College in 1984, received his Ph.D. in medical biochemistry (nutrition and metabolism) from the University of Alberta in 1993 and undertook his postdoctoral training with Dr. Alexander Leaf in the Department of Medicine at the Massachusetts General Hospital (MGH) and Harvard Medical School. Dr. Kang is currently an Associate Professor of Medicine at Harvard Medical School and Director of the Laboratory for Lipid Medicine and Technology at MGH. He is the Secretary/Treasurer of the International Society of Nutrigenetics and Nutrigenomics and a member of the World Council on Genetics, Nutrition and Fitness for Health.

Dr. Kang is one of the leading scientists in the field of omega-3 research. He studies the health effects of omega-3 fatty acids, how they work and how genetic technologies can be used to further their benefits. His work has contributed substantially to the advance of science and technology in his field. His innovations and breakthroughs have been recognized internationally.

Dr. Kang’s scientific contribution during the early stage of his career in Harvard is reflected by his pioneering work in demonstrating the anti-arrhythmic effect of omega-3 fatty acids. By using cutting-edge techniques and integrated methods, Dr. Kang (together with Dr. Leaf and collaborators) conducted a coherent series of seminal studies to systematically examine the anti-arrhythmic effect of omega-3 fatty acids at different levels, including molecular biology, electrophysiology, cell biology, animal model and clinical trial. His studies were the first to demonstrate that the anti-arrhythmic action of the fatty acids results mainly from stabilization of the electrical activity of the heart cells. His studies have also resulted in two patented formulas for the prevention and treatment of cardiac arrhythmia and sudden death. Several of his publications on these subject matters are the landmark papers of the field and have each been cited more than 100 times so far. His work has contributed to the establishment of the American Heart Association’s Scientific Statement on increased intake of omega-3 for cardiovascular health.

The most important scientific contribution Dr. Kang has made is the development of the fat-1 biotechnology to produce omega-3 fatty acids in animals. Normally, the essential omega-3 fatty acids cannot be de novo synthesized nor be derived from other fatty acids in mammals and many other animals as well (including those used for food, e.g. livestock), and must be obtained from the diet. Dr. Kang was the first to tackle this problem by using a genetic strategy---engineering genetically modified animals capable of making omega-3 on their own. His idea was to introduce a gene encoding a fatty acid converting enzyme, found only in low life such as the round worm C. elegans, into mammalian cells and animals, and thus enable them to convert omega-6 fatty acids, a type of fat far too excessive in the diets and tissues of animals and humans, to the beneficial omega-3 fatty acids, which are scarce in the diet and tissues and mainly found in fish. He proved the concept in cultured cells by adenovirus-mediated gene transfer in 2001 (PNAS 2001;98:4050) and successfully generated the world’s first “omega-3-producing” mammal, a mouse, by the method of microinjection in 2004 (Nature 2004;427:504) as well as the first omega-3 livestock, a pig, by nuclear transfer cloning in 2006 (Nature Biotechnology 2006;24:435).  His discovery has changed reality--- Now the transgenic animals are capable of producing omega-3 from omega-6 fatty acids and have high levels of omega-3 in all of their organs and tissues, with no need of dietary supplementation. This is a revolutionary technology and has a potential impact on agriculture, human nutrition as well as omega-3 research. An US patent (# 7,238,851) has been granted for this invention.

Dr. Kang’s discovery provides a new strategy for producing omega-3 fatty acid-rich foodstuff (e.g. meat, milk and eggs) by generating large transgenic animals/livestock (e.g. cow, pig, sheep and chicken). The current practice to enrich animal foods with omega-3 fatty acids is to feed animals with exogenous n-3 fatty acids (e.g. fish meal or other marine products), which is a costly and unsustainable means, as over-fishing and seafood contamination have become serious concerns today. Dr. Kang’s transgenic technology will provide a land-based, cost-effective and sustainable source of omega-3 to meet the increasing demand for omega-3 in the future. With such an innovation, the public could get the right amount of beneficial omega-3 fish oil fatty acids from non-fish sources, without having to make stringent changes in their diets. People will instead continue eating the foods they enjoy while still receiving the health benefits of omega-3, such as a 40% reduction in the risk of cardiac sudden death. Because of the potential impact, his discovery has drawn extraordinary attention from both the public and the scientific community and was widely reported by almost all the major media in the world (in 2004 about his fat-1 mice and in 2006 about the omega-3 pigs) (To see the media reports, please search “Omega-3 Jing Kang” on the Internet or go to In the News). Dr. Kang’s discovery was chosen as one of “Top 100 Science Stories of 2006” by Discover magazine as well as one of the Top 10 Significant Boston Research of 2006 by Nature Network.

Dr. Kang’s discovery also provides a new tool for omega-3 research, as the transgenic mice he created can serve as a model of increased tissue content of omega-3 fatty acids for studying the benefits of omega-3s in the body without changing diets. The use of the “omega-3’ transgenic mice can eliminate the need of feeding animals omega-3 fatty acids-supplemented diet and thereby avoid the potential confounding effects derived from dietary supplementation. This makes it possible to evaluate the health benefits of omega-3 fatty acids and elucidate the molecular mechanism of their action in a well-controlled experimental condition. Dr. Kang has so far received more than 100 requests for his transgenic mice and for research collaboration from biomedical scientists worldwide. His lab is currently collaborating with dozens of laboratories in different countries to study the health effects of n-3 fatty acids using his transgenic mice. Many papers derived from these studies have been published and highlighted by high impact journals. Several workshops on the transgenic mouse model have also been held so far. His work with the transgenic mice was selected as one of the Most Significant Dietary Supplement Research Advances of 2006 by the National Institutes of Health and named again by Discover magazine as one of “Top 100 Science Stories of 2007”. His studies using the transgenic mice have provided new knowledge, obtained for the fist time from a system without confounding factors of diet, for our understanding of the role of tissue status of omega-3 fatty acids as well as n-6/n-3 fatty acid ratio in disease prevention, and how these fatty acids work at a molecular level.

Dr. Kang is also interested in the development of innovative methods or devices for lipid analysis. Most recently, his team helped develop a cutting-edge technology for chemical imaging, which allows observing distribution and interactions of cellular lipid molecules, such as omega-3 fatty acids, in living cells with no destruction to cells and no need of labeling. In addition, a method developed by Dr. Kang’s lab to simplify the procedures of fatty acid analysis has been widely adopted by researchers in the field.

Dr. Kang’s seminal work has opened up new fields of investigation in nutritional medicine. His research has resulted in more than 100 scientific papers and books and several US patents. Much of his work was published in the top tier journals in the field of biomedical science, including Nature, Science, Nature Biotechnology, Nature Medicine, PNAS, Lancet, JCI, etc. Dr. Kang was the first to publish an original report about omega-3 in Nature. His high-impact publications have increased the public's as well as the scientific community’s awareness of omega-3. In fact, more and more scientists from other disciplines are becoming interested in omega-3 and collaborating with Dr. Kang. He has been invited to speak at more than 80 national and international conferences/seminars, including the MGH Medical Grand Round, during the last few years. He was named one of “The Best and Brightest 2007” by Esquire magazine.

Dr. Kang has also contributed significantly to education. He actively participated in teaching and training, and has mentored more than 40 pre- and post-doctoral trainees from different countries during the last five years.


Job Openings Contact Us Directions Links Support